Signal timing

Signal timing is the technique which traffic engineers use to determine who has the right-of-way at an intersection. Signal timing involves deciding how much green time the traffic lights shall provide at an intersection approach, how long the pedestrian WALK signal should be, and many numerous other factors.

Contents

Basic signal timing operation

To understand basic signal timing fundamentals, one must also understand the different modes of operation for the traffic signal controller. Many intersections have some sort of mechanism for detecting vehicles as they approach the intersection. Most common are induction loops. These are buried in the roadway and detect vehicles by changes in their magnetic field by the metal in passing vehicles. Other common methods are video detection which uses pixelation, microwave detection, and infrared detection among others. An intersection equipped with detection is said to be actuated. An intersection without detection is said to be fixed.

There are different categories of actuated signals. To save money on maintenance, some agencies opt to design an intersection as semi-actuated. Semi-actuated means the intersection has detection on the minor street approaches and major street left turns only. The major street is then programmed to operate a fixed time every cycle, but the controller will service the other movements only when there is demand. In signal coordination, most signals operate in a semi-actuated mode.

In fixed operation, a controller has a set programmed time to service all movements every cycle. The controller will service all movements whether or not there is vehicle demand. When a detector at an actuated signal breaks, that movement will then have to operate as fixed until the detector is repaired.

There are three general ways for a traffic signal to operate, FREE, COORD, and FLASH operation. In FREE operation, the signal is running based on its own demand and timing parameters based on the information provided by its detectors. It is not operating under any background cycle length. In COORD operation, short for coordination, the signal is running a background cycle length. Non-major street movements are usually still actuated, and the controller will rest on the major street until the background cycle length is fulfilled. The final mode is FLASH operation. When the volume of vehicles at an intersection no longer warrants the signal to be active, the signal can switch to FLASH mode. When volume picks up again the signal switches back into either FREE or COORD operation. The daily operation of a signal may involve it in FLASH early in the morning, COORD during the day, FREE in the evening, and back to FLASH late at night.

Basic timing functions

There are several basic timing functions that need to be programmed for the traffic controller to operate.

MIN time determines the minimum duration of the green interval for each movement. Left turns, minor streets, major streets, usually have different MIN times. Left turns and minor side street intervals are often in the range from 4 to 10 seconds while major streets often go higher than 15.

Gap, extension, or passage time determines the extendable portion of the green time for a movement. The movement remains in the extendable portion as long as an actuation is present and the passage timer has not expired. If the interval is set as three seconds and there is not vehicle present after that three seconds, the movement will terminate.

MAX time limits the maximum time of the green interval. If there are no conflicting demands on the intersection, the controller will ignore the MAX and rest in the major street movement.

Yellow Clearance determines the yellow time for the associated movement.

Red Clearance determines the all-red time for the associated movement.

Walk time provides the length of the walk indication.

Flashing Don't Walk is the duration of the flashing pedestrian clearance. This is timed as the length of the crosswalk divided by a speed of 3.5 feet per second.

Coordination

Coordination refers to the timing of the signals so that a "platoon" of cars traveling on a street arrives at a succession of green lights and proceeds through multiple intersections without stopping. A well coordinated signal system can enhance traffic flow, reduce delay and minimize pollution. However, it is not always possible to retain progression throughout a network of signals. It is also difficult to maintain signal progression on a two-way street. An early traffic engineer Henry Barnes, who served as Commissioner of Traffic in many cities including Baltimore, Maryland and New York, New York, developed coordinated traffic signal timings, so that large amounts of traffic could be accommodated on major traffic arterials.

Traffic signal timing is a very complex topic. For example timing a 'WALK' signal for a wide pedestrian crossing and slower pedestrians (for example the elderly) could result in very long waits for vehicles, and thus increases the likelihood of cars running the light, which could potentially cause accidents. Therefore, optimizing the safety of intersections involves multiple factors like street width, lane width, number of intersecting streets, availability of electricity for a signal, number of cars per unit of time and even/uneven nature of flow, number and type of pedestrians, and many other factors.

Traffic signals can be programmed to have different signal timing plans, depending on the time of day.

Research

Standardizing signal timing procedures, standards, and best practices has recently been completed in the form of the The Signal Timing Manual, Sponsored by the Federal Highway Administration FHWA. The Signal Timing Manual is a tabletop resource compiled by Kittelson & Associates, Inc., the Texas Transportation Institute, the Institute of Transportation Engineers, and the University of Maryland.

External links